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Abstract 

In this paper, we are concerned with Clough-Tocher macro-elements of any smoothness in any dimension. An n dimensional Clough-

Tocher complex is a split of an n simplex by connecting its centroid with its vertices. By using the Bernstein-Bézier representation of 

polynomials, we first make a unified analysis of the data compatibility in bivariate macro-element and a rule is given in a general 

case that the underlying macro-triangle can be wildly subdivided. Then Clough-Tocher macro-elements are setup in a recursive way 

that the n dimensional case can be obtained based on the n − 1 dimensional case with n ≥ 3. 
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1 Introduction  

 

In this paper, we are concerned with local interpolation 

over triangulations. By local we mean that the piece of 

the interpolant over a triangle depends only on data 

assigned on that triangle. Such an interpolant has 

received widespread discussion as a tool for use in free-

form surface design in the Computer Aided Geometric 

Design, finite element computation, and scattered data 

processing. 
The general setting for local interpolation of a 

prescribed smoothness over triangulations is to set up a 

model on one single representative triangle. It has a 

triangular symmetry in the sense that on the model 

triangle, the data at the vertices (or on its edges) have the 

same types and rotating the triangle with respect to its 

vertices does not alter the properties of the interpolant. In 

order to attain global smoothness on the whole 

triangulation, a successful model must allow the 

interpolants on any two adjacent triangles satisfying the 

prescribed smoothness across the common edge. For the 

sake of computation, the interpolant has to be simple 

enough and a good candidate of it can be a polynomial, a 

rational polynomial, and even their piecewise versions 

defined on a split of the model triangle. 

In literature, there have been works on lower 

dimensional cases; see [1] and [2]. Originally, Courant 

was the first to construct the triangular 0C polynomial 

element, followed by Argiris for the C1 element, by 

Wehlan[3] for the C2 element, and by Zenisek [4] for the 

general rC polynomial elements. The polynomial 

interpolant is simple but has the drawback that its degree 

has to be as larger as 4 times of the smoothness. To deal 

with this, a smart trick is to split the triangle into pieces 

and to take piecewise polynomials as the interpolant, 

which degree could be significantly lowered. This has 

triggered intensive research on 2D case; see [5] for a 

concise reference. Nonetheless, there are few such 

interpolation schemes for higher dimensions. 

A key obstacle in constructing triangular elements is 

the consistency of the smoothness, interpolation 

conditions and the degrees of piecewise polynomials.  

The interpolation condition means the data assigned at 

the vertices and on the edges, which are derivatives in 

general. In this paper, we will focus on interpolation on 

Clough-Tocher macro-elements in higher dimensions. A 

Clough-Tocher complex in Rn is a split of an n-simplex 

by connecting its centroid with its vertices. We will setup 

the  relationship amongst the amoothness, the order of 

derivatives and the degree of polynomials. 

This paper is organized as follows. In section 2, 

preliminary concepts are presented. Compatibility of 

Hermite interpolations with  polynomials and piecewise 

polynomials are discussed respectively in sections 3 and 

4, while the analysis of Clough-Tocher elements is made 

in section 5. We conclude this work in section 6. 

 

2 Preliminaries 

 

2.1 NOTATIONS 

 

Throughout this paper, we use the standard notation Rn to 

denote the Euclidean space of dimension n and and Pk for 

the space of polynomials of degree k. Still, the set 
nZ   of 

n-tuple non-negative integers will be utilized as multi-

indices. For any point 1 2( , , , )nx x x x  in Rn or in
nZ  , 

the weight of x is meant as 
1

n

i ix x


 . 

Denote by {0,  1,  ,  }nI n for an integer n ≥ 0. 

Suppose Ai  Rn, i  In , are points in general position. If 
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m ≤ n and J = {j0, j1, ···, jm}
nI , denote by 

0 1, , , mj jJ j  the simplex
0 1 mj j jA A A , which is an m-

face of the n-simplex 
nI

  . Still, if \cK J I J  , 

denote by ˆ
J K   the opposite face of 

J . Denote 

1{ :  | | }n

k Z k 

    . Given J = { j0, j1, ···, jm } nI , 

denote by 

0

( ) { :   }
i

m
r

k k j

i

R J k r k 


      

the r influence region of 
J , and by ( )r

kL J  the r influ-

ence layer of 
J defined as   

0 0

1

( ) ( ),

( ) ( ) \ ( ),    for   0.

k k

r r r

k k k

L J R J

L J R J R J r



 
 

Further, let 

0 1, , ,

0 ,| | 1( ) ( ) \ ( )m m lr r r r rm

k k l K J K l KL J L J L J     

0 1, , ,

0 ,| | 1( ) ( ) \ ( )m m lr r r r rm

k k l K J K l KR J R J R J    . 

Then it’s easy to obtain the following result. 

 

Proposition 2.1   

 

If  k ≥ 2r0 + 1, and  rl ≥ 2rl +1,  l = 0, 1, …, jm−1, then the 

collection 

0 1, , ,
{ ( )  :   , 1 }ir r r

k nR J J I J i    

forms a partition of .k Precisely,  

0 1 0 1, , , , , ,

0 1 0 1( , , , ) ( , , , )m mr r r r r r

k m k mR i i i R j j j    

for 0 1{ , , , }mi i i 0 1{ , , , },mj j j  if  

1 12 ,  0,  1,  ,  ,    2 1.l l mr r l j and k r      

 

2.2 BEZIER POLYNOMIALS 

 

It’s well-known [5] that any point A  Rn , with Cartesian 

coordinates x = (x1, x2, … , xn), has an alternative repre-

senttation in barycentric coordinates u = (u0, u1, …, un) 

with respect to the simplex 
nI

 in such a way that 

,    with   1.
n n

i i i

i I i I

A u A u
 

                     (2.1) 

Due to this, we use both u and x to indicate the point A 

and, given a function f,  f (u) = f (x) for the evaluation of  

f at A; this won’t be confusing since it’s clear in its 

context. 

Given a multi-index 
1

0 1( , , , ) n

n Z    

   with 

weight | | ,
ni iI



 define the Bernstein polynomial 

with λ 

| |
( ) ,B u u







 
  
 

 

where 

0 1

| | !
, .

! ! !
i

n

i

i In

u u


 

    

 
  

 
  

Denote by 

( ) /
n

i i

i I

A n  


  

the domain point in σ with index λ . 

If J = {j0, j1… jm} I and the index λ is such that its 

components with indices Jc are zero, then it will be 

convenient to take σJ (λm) = σ(λ), where  

0 1
( , , , ) .

m

m m

j j j Z       

Let Pk = Pk(Rn) denote the polynomials in n-variables 

of degrees up to k. With the barycentric coordinates 

system on the simplex σ, a polynomial p  Pk can be 

written in the well-known Bernstein-Bezier form or B-

form for short: 

| |

( ) ( )
k

p u b B u 
 

  , 

where bλ  is the Bezier-ordinate with the domain point 

σ(λ). 

Let B  Rn be another point with cartesian coordinates 

y and barycentric coordinates v. Then the vector AB is 

expressed as y − x and v − u. Notice that v − u has weight 

0 and therefore an element in Rn+1 with weight 0 is 

regarded as a vector in Rn that is expressed in barycentric 

coordinates and the evaluation of Bλ at such a vector does 

formally make sense. 

Now let δ = (δ0, δ1,…, δn) be a vector in Rn. If  f  C r, 

let 
r f denote the r-th derivative of f along the direction 

δ, which is meaningful since it’s not difficult to derive 

that 

1

( ) ( )
( )

n

n

i i

i I ii i

f u f x
f u v

u x
 

 

 
  

 
  , 

where (v1, v2, …, vn) stand for the cartesian coordinates of 

the vector  δ. 

One great benefit we can get from the Bezier 

representation is that the de Casteljau algorithm holds 

0 1 1

| | 1

1

( ) ,   ( ) ( ) ( ),   

, ,| |  ,   0,   1,   ,   ,

r r

n

b u b b u B u b u

Z n r r k

     



  











 

   


      (2.2) 

which provides a stable way calculating the Bezier 

polynomial. In fact, we 

have ( )p u  ( )kb u ,   | | 0.  Still, de Casteljau algorithm 

helps in finding derivatives of a polynomial. Let δ be a 

vector in Rn in barycentric coordinates. Then  

| |

!
( ) ( ) ( )

( )!

r k r r

r

k
u b u B

k r
  







 


  . 
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With this formulation, one can analyse the smooth 

relation between two polynomial patches defines on two 

adjacent simplices [6]. 

From the discussion above, we can also see that the 

compatibility holds for ri = 2ri+1, l = 0, 1,…, jn−2, and rn−1 

= μ . Therefore we conclude that 

 

Theorem 2.2  

 

The Cμ polynomial element on an n simplex σ can be 

realized by a polynomial of degree k = 2n−1μ + 1 and the 

data assigned on any r-face of σ are of order 2n−1−r μ. And 

these choices are optimal. 

 

3 Compatibility of Hermite interpolations with   

   polynomials 

 

3.1 THE ONE-DIMENSIONAL CASE 

 

In the one-dimensional case, recall the following Hermite 

interpolation problem: 

For f  C[ a,  b ], find polynomial p  Pk such that 

( ) ( ),   for , ,   0 .
t t

t t

d d
p x f x x a b t r

dx dx
         (3.1) 

It’s known in [6] that the data assigned at the 

endpoints a and b are consistent if and only if the number 

of conditions does not exceed the dimension of Pk, i.e.,  

k + 1 ≥ 2(r + 1)  or  k ≥ 2r + 1. 

If k is taken to be 2r + 1, the solution to the above 

interpolation (3.1) is unique. 

 

3.2 THE n-DIMENSIONAL CASE 

 

Let σ = 0 1 nA A A be an n simplex with vertices A1, A2,…, 

An in general positions. For 0 10 mi i i    , denote by 

0 1 0 1, , , m im
i i i i iA A A  the m-face of σ with indices i0, 

i1, …, im, by 

0 1, , ,

0 0 0

{ / : ,   } 
m j

n n m
r

i i i j i i i

i i j

R A n n n r n  
  

        

the r influence region of
0 1, , , mi i i and by 

0 1, , , m

r

i i iL  the r 

influence layer of 
0 1, , , mi i i , defined as 

0 1 0 1

0 1 0 1 0 1

 0 0

, , , , , ,

 

, , , , , , , , ,

,

\ ,     0.

m m

m m m

i i i i i i

r r r

i i i i i i i i i

L R

L R R for r



 
 

Suppose pPk(Rn) and ,   0,  1,  ,  1ir i n   are non-

negative integers. Assign on each i-face of σ data of order 

ir  as follows:  

1)  r0 data at Aj with influence region Rj ;  

2)  r1 data on AjAk with influence region  

0 0

, \ ( );j k j j kR R R R  

3) ri data on any i-face 
1 2 1 2, , i ij j j j j jA A A  of σ 

with influence region 

1 2 1 2

0

, , , , , ,i ij j j j j jR R \ 
1 2 1 1 2 1 2 1{ , , , } { , , , } , , ,i i il l l j j j l l lR

 
. 

 

3.3 COMPATIBILITY OF POLYNOMIAL ELEMENTS 

 

In this part, we are discussing the compatibility of data 

given on an n-simplex 
0 1 .n nA A A   

We start from the case n = 2. Let T = A0A1A2 be a 

triangle. A polynomial p  Pm on T satisfies 

1) vertex data of order r; 

2) edge data of order μ. 

Suppose p at A0 has B-ordinates b, || = m. The 

compatibility means that the influenced B-ordinates on 

the edges E1 and E2 are compatible with those at A0 so 

that 1 1{ : } { : }          are dependent on {λ : 

λ0 ≥ m − r}. Since (m − 2r, r, r)   and 2r is the farthest 

layer that belongs to  , we have [4] 

 

Theorem 3.1 It holds for 2-simplex that r ≥ 2μ and m ≥ 

4μ + 1. There exist schemes with r = 2μ and m = 4μ + 1. 

 

Now suppose on an n-simplex, there exist a scheme 

with rn = 2n−1μ and mn = 2nμ + 1. We will show that on an 

(n + 1)-simplex there exist a scheme with rn+1 = 2nμ and 

mn+1 = 2n+1μ + 1. 

Consider the r + 1 layer of p at A0, which can be 

regarded as a polynomial of degree r + 1 defined on an n-

simplex. The vertex data are of order rn and the 

polynomial is of degree mn. Therefore we have rn+1 + 1 = 

mn = 2nμ + 1 and then rn+1 = 2nμ . 

 

Theorem 3.2 On an n-simplex, r ≥ 2n−1μ and m ≥ 2nμ + 1. 

There exist schemes with r = 2n−1μ and m = 2nμ + 1. 

 

4 Compatibility of Hermite interpolations with  

   piecewise polynomials 

 

4.1 THE ONE-DIMENSIONAL CASE 

 

Now consider Hermite interpolation on splines. Suppose 

the interval [a, b] is subdivided into n segments by 

inserting nodes 0 1 .qa x x x b      Define the 

spline space[7] 

 
1(  , )( ) { : | ,  1,  2,  ,  }

i ik x x kS q s C s P i q 


     ,    (4.1) 

which is linear with dimension  

dim ( ) 1 ( 1)( )kS q k q k      .              (4.2) 

Similar to the polynomial case, the Hermite 

interpolation for splines reads For f  C[a, b], find 

polynomial ( )ks S n  such that 
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( ) ( ),  for , ,   0 .
t t

t t

d d
s x f x x a b t r

dx dx
       (4.3) 

Again, for a solution to this interpolation to exist, the 

number of conditions does not exceed the dimension of 

( )kS q
, i.e., q(k − μ) ≥ 2r + 1 − μ . 

Since a polynomial is a special case of a spline when 

its pieces become identical, we conclude that 

 

Lemma 4.1 The conditions in (4.3) are consistent if and 

only if 

q(k − μ) ≥ 2r + 1 − μ .                    (4.4) 

If q(k − μ) = 2r + 1 − μ, then there exists uniquely a spline 

( )ks S q  satisfying (4.3). 

 
4.2 THE TWO-DIMENSIONAL CASE 

 

Suppose a triangle σ is subdivided into sub-triangles in 

such a way that each angle of σ is divided into parts and 

the edges of the sub-angles meet points inside σ that 

become interior vertices of the subdivision. 

Now suppose the triangle σ is assigned data of order r 

at its vertices and data of order μ on its edges. Look at 

one vertex of σ, the corresponding angle of which is 

supposed to has been split into β parts. The layer r + 1 of 

domain points at this vertex is related to a univariate 

Hermite interpolation in 1( )rS   with boundary data of 

order μ. 

We continue to consider the compatibility of piecewise 

polynomial elements by using the ideas in the last 

subsection. 

 
FIGURE 1 The Clough-Tocher split of a triangle. 

Suppose an angle of the macro-triangle is split into β 

parts. The dada given at this vertex is of order r, while the 

global smoothness is μ. Look at the r + 1 layer. Now it 

can be regarded as a univariate spline of degree r + 1 and 

smoothness μ. The data on the two sides of the macro-

triangle sharing this vertex induce that the univariate 

spline has data assigned of order μ at its two borders. In 

order for this Hermite interpolation to have a solution, it’s 

necessary that 2(μ + 1) ≤ (r + 2) + (β − 1)(r + 1 − μ). 

Therefore we have the following result. 

 

Theorem 4.2 

β(r + 1 − μ) ≥ 1 + μ .                      (4.5) 

This inequality covers a variety of schemes in 

literature. Specifically,  

(1) β = 1. This implies r ≥ 2μ. This meets the case 

when the element is a polynomial and the macro-triangle 

is not split; see  [3] and [4]. 

(2) β = 2. This implies 2r ≥ 3μ − 1. The Clough-

Tocher element and the Powell-Sabin element fall into 

this case; see [8], [9] and [10]. 

(3) β = 3. This is the Morgan-Scott element [11]. 

(4) β = 4. This is the Double-Clough-Tocher element; 

see [12] 

(5) β = μ + 1 and r = μ. This is the Shi-Wang element 

see [8]. 

 

5 Compatibility of Clough-Tocher elements 

 

In this section, we will focus on the consistency analysis 

on the Clough-Tocher element of any dimensions. For 

this, we define 0 2, , , ,
( )nr r

k CTS
   as the spline space on the 

Clough-Tocher macro-triangle CT  with polynomial 

degree k, smoothness , data assigned on the i-faces of 

order ri, i = 0,1,…,n −2, and super order α at the centroid. 

The objective is to setup the relation among these 

parameters for an interpolant to exist in this spline space. 

  

5.1 TWO-DIMENSIONAL CASE  

       

A Clough-Tocher split of a triangle is illustrated in 

Figure 1. Here  = 2. From the above discussion in 

section 4.2, it holds 2r ≥ 3μ – 1, in which the smallest r 

can be taken as 

3 ,        if 2 ,3 1

3 1,   if 2 1.2

m m
r

m m





 
        

       (5.1) 

Let α be the super order enforced at the centroid. This is 

equivalent to that the local α influence region degenerates 

to a polynomial of degree α. Now face the edge A1A2 and 

increase α from 0 up to its ultimate value α such that the 

data it covers are compatible but it can’t move further.  

Notice that the local α influence region spans a triangle 

Tα by scaling the original triangle to α/q. The distance 

between a vertex of the local region is δv = q − α and the 

order of data at the local vertex is r − δv, while the order 

of data at the local edge is μ − δv. The compatibility may 

be destroyed at level r − δv + 1 of the local vertex. 

Therefore for the data to be consistent, we have  

(r − δv + 1) + 1 ≥ 2(μ − δv + 1), 

which, together with q = 2r + 1, reduces 3r + 1 − 2μ ≥ α. 

To conclude, we have the following theorem. 

Theorem 5.1 On Clough-Tocher, there is a spline in 
, ,

2 1 ( )r

r CTS  

   with,     
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3 ,        if 2 , 5 1,   if 2 ,

  
3 1,   if 2 1, 5 2,   if 2 1.

m m m m
r

m m m m

 


 

   
  

      
    

The figures from Figure 2 to Figure 6 illustrate the 

domain points of some splines on 2D Clough-Tocher split.  

 

 
FIGURE 2. The domain points of 

1,1,2

3 ( )CTS    with  center remapped. 

 

 

 
FIGURE 3. The domain points of 

2,3,6

7 ( )CTS   with center remapped 

 

 

 

 
FIGURE 4. The domain points of 

3,4,7

9 ( )CTS     with center remapped 

 

 

 

FIGURE 5. The domain points of 
4,6 11

13 ( )CTS ，
 with center remapped 

 

 
FIGURE 6. The domain points of 

5,7,12

15 ( )CTS   with center remapped 

 

5.2 THREE-DIMENSIONAL CASE 

 

Now investigate the compatibility on the Clough-Tocher 

split of a tetrahedron A0A1A2A3. Suppose each piece of 

polynomials has degree p. Then p ≥ 2r0 + 1, where r0 is 

the order of data assigned at vertices. 

From the discussion in 2D case, look at the r0 + 1-th 

layer to a vertex, which can be regarded as a 2D Clough-

Tocher scheme with polynomial degree r0 + 1, vertex 

data order r1 and global smoothness μ . This gives 

r0 + 1 ≥ 2r1 + 1,  2r1 ≥ 3μ − 1. 

Further, to suppress freedom, we assume the 

interpolant has super smoothness α ≥ μ at the centroid. 

From this, we have 

[r1 − (n − α) + 1] + 1 ≥ 2 [μ − (n − α) + 1], 

[r0 − (n − α) + 1] + 1 ≥ 2 [r1 − (n − α) + 1]. 

which reduce to 

r1 + p − 2μ ≥ α,  r0 + p − 2r1 ≥ α . 

Then based on (5.1)  we can take, 

0 0 1 1

3 1
2 1,   2 ,   

2
p r r r r

  
     

 
, 

and  

α = r1 + n − 2μ = 5r1 + 1 − 2μ. 

Therefore we have  

 

Theorem 5.2 On Clough-Tocher split of a tetrahedron, 

there is a spline in 0 1, , ,
( )

r r

k CTS
 

 , where k = 2r0 + 1, r0 = 

2r1, 

            

1

3 ,          if 2 ,
   

3 1,     if 2 1.

11 1,       if 2 ,

11 2,      if 2 1.

m m
r

m m

m m

m m











 

  

 
 

  

                (5.2) 
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5.3 GENERAL N-DIMENSIONAL CASE 

 

From the above discussion, generally, a scheme of 

dimension n can be obtained via a scheme of dimension 

n−1. Because the methodology behind equation (5.2)   

still works for the general case, the following conclusion 

is obvious.  

  

Theorem 5.3 On Clough-Tocher split 
CT  of a n-simplex 

with n > 3, there is a spline in 0 2, , , ,
( )nr r

k CTS
    where k = 

2r0 + 1, ri = 2ri+1, 30,  1,  ,  ,ni r   

2

3 ,          if 2 ,
 

3 1,     if 2 1.

11 1,       if 2 ,

11 2,      if 2 1.
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  
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6 Conclusion 

 
Interpolation over triangles is a fundamental technique in finite 

element approaches, where splines are preferable in serving as 

interpolants. Clough-Tocher macro-triangle is a typical split of a 

triangle due to its simple structure. We have discussed 

systematically in the above context on  Clough-Tocher macro-

elements of any smoothness in any dimension. A relation has 

been setup for smoothness, data orders and polynomial degrees. 

This relation is instructive in constructing an interpolation 

scheme over Clough-Tocher triangles. Further, we should 

investigate the performance of interpolants over Clough-Tocher 

triangle, and exploit interpolation over more sophisticated split 
structures. 
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